Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 34(36): 11870-83, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186736

RESUMO

Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia.


Assuntos
Acetilcolina/metabolismo , Butirilcolinesterase/metabolismo , Junção Neuromuscular/metabolismo , Células de Schwann/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Cloreto de Ambenônio/farmacologia , Animais , Bungarotoxinas/farmacologia , Inibidores da Colinesterase/farmacologia , Potenciais Pós-Sinápticos Excitadores , Exocitose , Feminino , Proteínas de Membrana/metabolismo , Miastenia Gravis Autoimune Experimental/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Ligação Proteica , Ratos , Células de Schwann/fisiologia , Terbutalina/análogos & derivados , Terbutalina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
2.
Eur J Neurosci ; 37(2): 181-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23121214

RESUMO

Acetylcholinesterase (AChE) is an enzyme that hydrolyses the neurotransmitter acetylcholine, thereby limiting spillover and duration of action. This study demonstrates the existence of an endogenous mechanism for the regulation of synaptic AChE activity. At the rat extensor digitorum longus neuromuscular junction, activation of N-methyl-d-aspartate (NMDA) receptors by combined application of glutamate and glycine led to enhancement of nitric oxide (NO) production, resulting in partial AChE inhibition. Partial AChE inhibition was measured using increases in miniature endplate current amplitude. AChE inhibition by paraoxon, inactivation of NO synthase by N(x)-nitro-L-arginine methyl ester, and NMDA receptor blockade by DL-2-amino-5-phosphopentanoic acid prevented the increase in miniature endplate current amplitude caused by amino acids. High-frequency (10 Hz) motor nerve stimulation in a glycine-containing bathing solution also resulted in an increase in the amplitude of miniature endplate currents recorded during the interstimulus intervals. Pretreatment with an NO synthase inhibitor and NMDA receptor blockade fully eliminated this effect. This suggests that endogenous glutamate, released into the synaptic cleft as a co-mediator of acetylcholine, is capable of triggering the NMDA receptor/NO synthase-mediated pathway that modulates synaptic AChE activity. Therefore, in addition to well-established modes of synaptic plasticity (e.g. changes in the effectiveness of neurotransmitter release and/or the sensitivity of the postsynaptic membrane), another mechanism exists based on the prompt regulation of AChE activity.


Assuntos
Acetilcolinesterase/metabolismo , Junção Neuromuscular/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Potenciais Pós-Sinápticos em Miniatura , NG-Nitroarginina Metil Éster/farmacologia , Junção Neuromuscular/fisiologia , Plasticidade Neuronal , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Paraoxon/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Valina/análogos & derivados , Valina/farmacologia
3.
Eur J Med Chem ; 46(9): 4715-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21652122

RESUMO

Reactions of pyrimidinophanes with two 6-methylthiocytosine and one 5(6)-alkyluracil moieties bridged with each other by polymethylene spacers with methyl or nonyl p-toluenesulfonate, p-toluenesulfonic acid, methanesulfonate and trifluorosulfonate afforded amphiphilic macrocyclic bis-p-toluene-, methane- and trifluorosulfonates. Despite the presence of several reaction centers in the initial pyrimidinophane molecules, protonation and methylation occurred only at the N(1) atom (with quaternization) of the 6-methylthiocytosine moieties. The bacteriostatic and fungistatic activity of the products was estimated. Macrocyclic tosylates exhibit a remarkable selectivity towards Staphylococcus aureus, with MIC values comparable with a reference drug. Bacteriostatic activity of the amphiphilic pyrimidinophanes depends on the size of the macrocycles, and the highest activity corresponds to definite lengths of polymethylene bridges. Besides, the antimicrobial activity of the screened pyrimidine derivatives depends on their topology. While macrocyclic tosylates are more active against bacteria than against fungi, acyclic tosylate with the same structural fragments shows a dramatical decrease of MIC towards mold and yeast with respect to the corresponding macrocycle. It is found that macrocyclic and acyclic tosylates in high dilutions decrease the extracellular lipase activity.


Assuntos
Antibacterianos/farmacologia , Citosina/química , Pirimidinas/farmacologia , Uracila/química , Animais , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização por Electrospray
4.
Br J Pharmacol ; 163(4): 732-44, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21232040

RESUMO

BACKGROUND AND PURPOSE: The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH: Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS: The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools.


Assuntos
Inibidores da Colinesterase/farmacologia , Diafragma/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Uracila/análogos & derivados , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Diafragma/enzimologia , Feminino , Hipocampo/enzimologia , Masculino , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Músculo Esquelético/enzimologia , Condicionamento Físico Animal/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...